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Abstract. We report numerical calculations of the condensation of plasma in short coronal loops, which have several interesting
physical consequences. Firstly, we propose a connection between small, cool loops (T < 106 K), which constitute one of the
basic components of the solar transition region, and prominences, in the sense that the same physical mechanism governs
their dynamics: Namely the onset of instability and runaway cooling due to strong radiative losses. Secondly, we show that
the temporal evolution of these loop models exhibits a cyclic pattern of chromospheric evaporation, condensation, motion
of the condensation region to either side of the loop, and finally loop reheating with a period of 4000–8000 s for a loop
of 10 Mm length. Thirdly, we have synthesized transition region lines from these calculations which show strong periodic
intensity variations, making condensation in loops a candidate to account for observed transient brightenings of solar transition
region lines. Remarkably, all these dynamic processes take place for a heating function which is constant in time and has a
simple exponential height dependence.
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1. Introduction

Since Skylab, loops have been recognized as a vital ingredi-
ent in coronal structure and coronal energetics. Indeed, one
could imagine that the corona is entirely composed of nested
loops with varying lengths, temperatures, heating rates, and ac-
tivity levels. A nested structure of low-lying cool loops was
suggested by Dowdy et al. (1986) to explain the temperature
dependence of the emission measure. Thus, building an under-
standing of loop energetics is obviously a desirable objective.
There are alternative scenarios for the structure of the transition
region (see, e.g., Mariska 1992). As recent SOHO/SUMER re-
sults have shown, however, small cool loops to constitute one
of the basic building blocks of the transition region (Feldman
et al. 2000), this paper will concentrate on the dynamics and
energetics of cool loops.

The main components in the energy balance of static loops
were identified by Rosner et al. (1978): They consist of the un-
known heating, thermal conduction and radiative losses in the
loop itself and at the transition region/chromosphere bound-
ary. Roughly speaking one can understand static loop behavior
quite well by assuming that the heat deposited by the heating
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mechanism in the corona is largely conducted back towards the
chromosphere where it is radiated away. Due to the strong tem-
perature dependence of the thermal conduction coefficient, this
scenario almost invariably leads to apex loop temperatures of
roughly 1 MK bounded by a geometrically small transition re-
gion as the temperatures fall towards 104 K and chromospheric
densities at the loop footpoints. Variations in the heating rate
are dealt with in this type of loop by chromospheric evaporation
or coronal condensation such that the radiative losses at the top
of the chromosphere balance the thermal conductive flux from
above (Hansteen 1993). This behavior is almost independent of
the details of the heat deposition – as long as radiative losses
near the loop apex are not an important factor in the energy
budget.

Clear as the model above seems, serious difficulties are en-
countered as soon as loop model predictions are confronted
with the observations themselves. These difficulties are vari-
ous and sundry (Mariska 1992) but might be summarized as
follows: The differential emission measures predicted by the
models gives a much lower line emission from the lower tran-
sition region, below 105 K, than what is observed (alternatively
one could say that the line emission from the upper transition
region, above 105 K, is predicted much too high). In addition it
is very difficult to account for the pervasive average red shift
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of up to 10 km s−1 seen in lower transition region lines and
blue-shifts in the upper transition region and low corona (Peter
& Judge 1999).

Several proposals have been put forward to answer the
difficulties outlined above. Dowdy et al. (1986) suggested a
two-component transition region, consisting of magnetic fun-
nels and a nested structure of low-lying, cool coronal loops.
This new class of static loop solutions had been discussed
by Antiochos & Noci (1986). Cally & Robb (1991) argued,
however, that these cool loop solutions were unstable, and
Cally (1990) proposed turbulent thermal conduction as an al-
ternative hypothesis to explain the enhanced transition region
emission. As for the spectral diagnostics of transition region
lines, loop dynamics due to downward-propagating magneto-
acoustic waves were shown to be a candidate to account for the
pervasive redshifts (Hansteen 1993).

However, it was first with the observations by the SOHO
and TRACE instruments that the importance of cool loops and
loop dynamics has belatedly come to the foreground. Peter
(2000) gives evidence for a multi-component structure of the
transition region, and Feldman et al. (2001) reach the conclu-
sion that regions of hotter and cooler plasma in the solar atmo-
sphere are essentially disconnected from each other.

The question that is raised is what implications these new
ideas have on our understanding of the structure and energetics
of both cool and hot coronal loops. Obviously a time-dependent
heating will produce a number of dynamic phenomena such as
waves or material motions through evaporation or condensa-
tions. But as we will show below it is also found that within a
certain parameter range of static mechanical energy deposition
quite violent dynamics can ensue.

Numerous mechanisms of coronal heating have been pro-
posed (e.g. wave heating, nanoflares, magnetic reconnection),
but independent of the detailed process of energy release there
is now observational evidence that coronal loops are predomi-
nantly heated at the footpoints (Aschwanden et al. 2000, 2001).
With heating concentrated near the loop footpoints it is no
longer certain that sufficient energy to counter radiative losses
is deposited near the loop apex. In fact, for such loops static
solutions with a hot midpoint may no longer exist as the ra-
diative loss rate increases strongly in the loop center when the
temperature decreases towards T ≈ 2 × 105 K. If the mag-
netic field topology is such that the loop has a dip in the cen-
ter, footpoint heating can lead to the condensation of plasma
in the loop center and hence give rise to prominence formation
(Antiochos et al. 1999). It was also found by Antiochos et al.
(2000) that this type of prominence formation shows a cycle
of formation, motion, and destruction. Recently, it was demon-
strated by Karpen et al. (2001) that the condition of a “dipped”
geometry is indeed not a necessary condition for prominence
formation in long loops (their work describes a loop of 340 Mm
length). A key element in their prominence scenario is the large
ratio of loop length to the damping length of the heating func-
tion, and the authors argue that shorter loops with a smaller
ratio should therefore behave differently.

We present numerical calculations which show that, de-
pending on the damping length of the heating function, con-
densation is also possible in short, cool coronal loops. We study

the evolution of these loops, discuss static as well as dynamic
solutions and finally calculate the time-dependent emission of
transition region lines arising from this model.

2. Numerical model

We numerically solve the time-dependent hydrodynamic equa-
tions for conservation of mass, momentum and energy in
one spatial dimension, coupled with the ionization rate equa-
tions for several elements and self-consistent radiative losses
(cf. Hansteen 1993, for details). The modeled plasma is sub-
jected to gravitational acceleration equal to that found on the
solar surface. Thermal conduction, radiative losses and a coro-
nal heating term are included in the energy equation.

The equations for mass conservation, momentum, energy,
and ionization and recombination rates read as follows:

• Mass conservation:

∂ρ

∂t
+
∂

∂z
(ρv) = 0. (1)

• Momentum equation:

ρ
∂v

∂t
+ ρv
∂v

∂z
=
∂

∂z
(p + Λ) − ρg‖. (2)

• Energy equation:

∂

∂t
(ρe) +

∂

∂z
(ρve) + (p + Λ)

∂v

∂z
= −∂Fc

∂z
+ Qm

−Lrad + Qo. (3)

• Rate equations:

∂ni j

∂t
+
∂

∂z
(ni jv) = ne

[
ni j−1Ci j−1 − ni j(Ci j + αi j)

+ni j+1αi j+1

]
. (4)

Here v denotes the velocity along the curvilinear loop coordi-
nate, z, g‖ the component of the gravitational acceleration that
is parallel to the magnetic field, Qm the mechanical heating
rate, Lrad the radiative loss rate per unit volume, and Qo a small
“opacity heating” term that is included in order to maintain
chromospheric temperatures at roughly 7000 K. The internal
energy, e, is calculated as the sum of the thermal and internal
energy including only ionization states, the contribution from
the excitation energy is negligible. The population of the ion-
ization state j of element i is denoted by ni j, while ionization
rates and recombination rates are represented by Ci j and αi j,
respectively. The artificial viscosity term ∂Λ/∂z (according to
von Neumann & Richtmyer 1950) is discussed by Hansteen
(1993). The thermal conduction is set to Fc = κ0T 5/2dT/dz
(Spitzer 1962) with κ0 = 1.1 × 10−11 W m−1 s−1 K−7/2.

Radiative losses are computed assuming that the plasma is
effectively thin. While, ideally, one should solve the equation
of radiative transport in order to calculate the radiative losses,
comparisons with models where this has been done (Carlsson
2003; Kuin & Poland 1991) indicate that the errors incurred by
assuming effectively thin losses in the Lyα line are not signifi-
cant to the energetics of the system in the upper chromosphere
and above. Radiative losses are due to collisional excitation
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of the various ions comprising the plasma. We have included
the elements hydrogen, helium, carbon, oxygen, neon, and iron
in the radiative losses, as well as thermal bremsstrahlung, us-
ing the ionization and recombination rates given by Arnaud &
Rothenflug (1985) and Shull & van Steenberg (1982) and the
collisional excitation rates found through the HAO-DIAPER
atomic data package (Judge & Meisner 1994). The collisional
excitation rate from the ground state of hydrogen to its first ex-
cited state is computed from coefficients found in Janev et al.
(1987). Some of the metals are treated by assuming ionization
equilibrium and then deriving an a priori radiative loss curve as
a function of electron temperature. On the other hand radiative
losses from the ions specifically mentioned in this study, i.e.
losses from hydrogen, helium, carbon and oxygen, are com-
puted consistently with full time-dependent rate equations.

The equations are formulated on a staggered, adaptive grid
using the Reynolds transport theorem as described by Winkler
et al. (1984) and the adaptive grid formulation suggested by
Dorfi & Drury (1987). Particle and momentum fluxes are calcu-
lated according to the second-order upwind method of Van Leer
(1974). This results in a set of equations which are solved im-
plicitly by means of the Newton-Raphson scheme to advance
the equations in time.

2.1. Loop heating

In order to parametrize the energy input into the coronal loop,
we specify the energy flux amplitude at the footpoints of the
loop, Fm0, and assume a mechanical heat flux that is constant
up to a height z1 and then decreases for z ≥ z1 as

Fm(z) = Fm0 exp[−(z − z1)/Hm] (5)

with a damping length Hm.
We will vary Hm between 0.25 and 3.25 Mm in the mod-

els presented below. For the mechanical energy flux we adopt
the value of Fm0 = 150 W m−2 (the same as the one used by
Hansteen & Leer 1995), and set z1 = 1.75 Mm for a loop
of 10 Mm length.

The heating rate, i.e. the energy deposition per unit time
and unit volume, is given by the divergence of the energy flux:

Qm(z) = −A0

A
dFm(z)

dz
=

A0

A
Fm(z)
Hm
· (6)

We consider a loop of low β plasma and assume a con-
stant cross section of the loop, i.e. A = A0 = const. This
parametrization of the heating function was first suggested by
Serio et al. (1981) and seems to be supported by recent obser-
vations (Aschwanden et al. 2000, 2001). Special care was taken
to normalize the heating rate to a given energy flux in order to
separate effects from changes of the amplitude of the energy
flux to changes in its spatial distribution.

3. Results: Condensation due to thermal instability

3.1. Initial state

Our model coronal loop has a total length of 10 Mm, consist-
ing of a semicircular arch of 8 Mm length and a vertical stretch

Fig. 1. Initial configuration: temperature, T (left), and particle density,
ρ (right), along the loop with a total length of 10 Mm.

of 1 Mm length at both ends. In Fig. 1 we show the initial
loop configuration. The temperature and density are plotted as
a function of distance, z, along the loop. At the base we find
a total particle density of nbase = 8.8 × 1020 m−3. This den-
sity corresponds (very) roughly to a height of h = 605 km
above τ500 nm = 1 in the Vernazza et al. (1981) quiet sun model.
The ionization degree of hydrogen is ≈0.3 % at this height in
our model. The base temperature is set to Tbase = 7000 K.

In the chromosphere, the temperature remains constant
while the density falls off exponentially with a scale height
of about 190 km until the transition region is encountered
at 1.6 Mm. Here the temperature rises rapidly reaching 105 K
at 1.63 Mm and 5× 105 K at 2.81 Mm. The loop apex tempera-
ture is 6.55 × 105 K.

Energy losses by radiation are Lrad ≈ 10−4 W m−3 in the
coronal and transition region portions of the loop while con-
ductive losses to the top of the chromosphere account for
∇Q ≈ 8 × 10−4 W m−3, i.e. the loop is essentially a “hot loop”
in that the energetics are dominated by conduction.

The sound crossing time for the loop is 7 min and a low am-
plitude acoustic wave is initially bouncing in the coronal por-
tion of the loop between the two steep temperature gradients.
This wave had been triggered by a temporally and spatially lo-
calized energy deposition (nanoflare) in the upper part of the
loop. This episodic heating mechanism was switched off be-
fore the start of the simulation, and replaced by the continuous
heating function given by Eq. (6). All calculations presented
here could have equally well been initialized with a static loop
model, but we decided to start with this perturbed model in or-
der to illustrate that the formation of recurrent condensations is
not only possible when starting from an analytic solution, but
also for dynamic, and therefore more “realistic” circumstances.

3.2. Loop evolution

Starting from the loop described above, we prescribe
a time-independent heating function as given by Eq. (6) with
a damping length of Hm = 1.25 Mm, which results in a heating
rate at the loop center that is 15% of the maximal heating rate,
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Fig. 2. Temporal evolution of temperature (left), velocity (center), and density (right) along the loop. The heating rate for the loop shown is
characterized by Fm0 = 150 W m−2 and a scale height of Hm = 1.25 Mm.

Qm(z1). At z = z1 = 1.75 Mm, the ratio of mechanical heat-
ing to radiative losses is 0.26 at t = 0, while at the loop apex,
it is 2.10.

The evolution of the loop temperature, velocity, and density
is shown in Fig. 2. During the first 2300 s the loop cools down
from Ttop(t = 0) = 6.5 × 105 K to Ttop(t = 900 s) = 2 × 105 K,

while the density stratification remains roughly constant and
the low amplitude acoustic wave continues to bounce between
the two transition regions.

At t = 2300 s there is a sudden change: The temperature
at the loop apex is no longer the maximal loop temperature,
and this dip in the temperature stratification amplifies rapidly.
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At the same time, a flow towards the cooling loop apex sets
in, which reaches v ≈ 2 km s−1 at t = 3200 s. At t = 3400 s,
a clump of cool (104 K) material with rapidly increasing mass
content has formed at the loop apex. This clump, which we
call the condensation region hereafter, eventually starts moving
slowly towards one loop leg and is accelerated to v ≈ 3 km s−1

before draining into the chromosphere at t = 5300 s. As a re-
sult, a weak rebound shock forms on the left side, followed by
a phase of chromospheric evaporation which refills the evacu-
ated loop with plasma. This upflow decreases with time from
v(t = 5400 s) ≈ 1.5 km s−1 to v(t = 8000 s) ≈ 0. In the mean
time, the apex temperature of the loop has reached its maxi-
mum of Tmax,top = 3.4 × 105 K at t = 7200 s. The subsequent
decline in temperature is first slow and then becomes faster to-
wards t = 10 000 s. At this time a dip in the temperature profile
forms again at the loop apex, and the whole process repeats.

In the case of the model run shown in Fig. 2, a slow
magneto-acoustic wave of low amplitude passes through the
loop in the beginning of the simulation and leads to a leftward
motion of the condensation region. Alternatively, an asymme-
try of 1% between the deposited energy in both legs proved to
be sufficient to dictate the draining direction: the condensation
region then moves to the side on which less energy is supplied.

3.3. Energy balance analysis

The formation of the central dip of the temperature stratifica-
tion results from the concentration of heating near the foot-
points of the loop or, to put it differently, from insufficient heat-
ing at the top. In order to better understand the evolution of the
loop, let us consider the energy balance at the loop apex for
a damping length of Hm = 1.25 Mm. The relevant terms for
this are the mechanical energy supply, Qm, the radiative losses,
Lrad, the adiabatic compression, p∇v, and the divergence of the
conductive flux, ∇Fc.

As the density in the coronal part of the loop increases,
the mechanical heating per particle, Qm/ne, decreases (the ion
density, nion, equals approximately the electron density, ne).
This is displayed in the top row of Fig. 3. At the same time, the
radiative losses per particle, Lrad/ne (Fig. 3, center), increase as
the temperature drops to T = 2×105 K, which is predominantly
due to the temperature dependence of the radiative losses.

The time-dependence of the total energy balance at the apex
is dominated by two interacting processes, namely the increase
of radiative losses and the increase of density. The bottom plot
of Fig. 3 shows that, as a result of this interplay, the energy
supply at the loop top becomes negative at t = 2000 s, which
explains the developing dip in the temperature profile. The si-
multaneous decrease of the gas pressure initiates a symmet-
ric flow towards the center of the loop, so that more and more
mass is advected and a condensation region forms. Once the
temperature dip has formed as a consequence of the described
loss of equilibrium, a thermal instability sets in as Lrad ∝ n2

e.
This process of runaway-cooling has been described, e.g., by
Antiochos & Klimchuk (1991). As our model loop is of semi-
circular shape, the configuration with a condensation region lo-
cated at the very center of the loop is gravitationally unstable.

Fig. 3. Energy balance at the loop apex for a damping length of Hm =

1.25 Mm. From top to bottom: electron density, ne, mechanical heating
per particle, radiative losses per particle, the sum (Qm − Lrad − p∇v −
∇Fc) per particle (negative values mean that the loop apex is losing
energy), and the temperature at the loop top.

Therefore, the slightest perturbation forces the condensation
region to move downward in either direction, where it expe-
riences increasing acceleration as described below.

3.4. The role of the damping length

A plausible hypothesis is that the major factor in determining
the cyclic behavior of the loop lies in the damping length, Hm,
of the heating function because this critically influences the
heat deposition at the loop top. We have studied the influence
of the damping length on the thermal evolution of the loop by
varying Hm from 0.25 Mm to 3.25 Mm and in each case letting
the loop model evolve for 20 000 s.

In Fig. 4, the mechanical heating function, Qm(z), is plot-
ted for different values of Hm. The temporal evolution of the
mean loop temperatures, 〈T 〉, is displayed for these models in
Fig. 5. For this plot, we define the mean temperature as the av-
erage temperature over the central half of the loop, i.e. from
z = 2.5 Mm to z = 7.5 Mm.

Let us consider the limiting cases first: for short damping
lengths of Hm <∼ 0.5 Mm, the loop decays as not enough energy
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Fig. 4. The mechanical heating function, Qm(z), plotted for different
values of Hm. Dashed line: Hm = 1.5 Mm, solid line: Hm = 1.25 Mm,
dotted line: Hm = 1.0 Mm, dash-dotted line: Hm = 0.75 Mm,
long-dashed line: Hm = 0.5 Mm.

Fig. 5. The influence of the damping length, Hm, on the thermal
evolution of the loop. Dashed line: Hm = 1.5 Mm, solid line:
Hm = 1.25 Mm, dotted line: Hm = 1.0 Mm, dash-dotted line: Hm =

0.75 Mm, long-dashed line: Hm = 0.5 Mm.

is deposited in the upper part of the loop to balance the radiative
and conductive losses. In this case the temperature in the loop
falls during the first 15000 s to roughly 104 K and stays at that
level for the remainder of the model run, maintained in part by
the “opacity” heating term.

On the other hand, for longer damping lengths with Hm ≥
1.5 Mm, the energy deposition at the loop center is large
enough to sustain a stable loop against radiative and conduc-
tive losses and an average loop temperature of 3.6 × 105 K
(for Hm = 1.5 Mm) is reached and maintained (see Fig. 5,
dashed). Even longer damping lengths lead to stable loops with
slightly higher temperatures.

The regime in between, with intermediate damping lengths
of 0.75 Mm ≤ Hm < 1.5 Mm, shows the cyclic behavior de-
scribed above. In these cases, the loop exhibits a dynamic be-
havior, triggered by the onset of thermal instability as described
in Sect. 3.2.

Extending the description of the model run analyzed in
Sect. 3.2, we focus on the solid line in Fig. 5, for a damping
length of Hm = 1.25 Mm. The first minimum of this curve
with 〈T 〉min = 1.4 × 105 K is attained at t = 3000 s, corre-
sponding to the formation of the condensation region. This is

Table 1. Loop parameters for different damping lengths, Hm:
Minimum mean temperature, 〈T 〉min, maximum mean temperature,
〈T 〉max, and corresponding linestyles in Figs. 4–6.

Hm[Mm] 〈T 〉min[105 K] 〈T 〉max[105 K] P[s] linestyle
0.5 0.1 0.1 ∞ — —
0.75 1.4 1.8 4600 − · − · −·
1.0 1.5 2.4 4100 · · · · · · · · ·
1.25 1.4 3.2 7800 − −− −− −−−
1.5 3.6 3.6 ∞ − − −−

followed by an increase in temperature towards a temporary
plateau at 〈T 〉 = 1.8 × 105 K. During this phase, the condensa-
tion region is moving down one loop leg, while the top of the
loop is already reheating. After the condensation region has left
the loop, the temperature rises rapidly to 〈T 〉max = 3.7 × 105 K
at t = 7200 s. At this point in time, the net energy supply at
the loop top decreases (cf. Sect. 3.3), and the loop starts to cool
gradually. When the temperature approaches T = 2 × 105 K,
the radiative losses increase strongly which drastically accel-
erates the cooling process. As a result, a new condensation re-
gion forms, and a second minimum in mean temperature is at-
tained at t = 10 800 s. The period of this condensation cycle is
P = 7800 s.

For the cases of shorter damping lengths, Hm = 0.75 Mm
and Hm = 1.0 Mm, the formation of a condensation region
works qualitatively in the same way. Let us therefore focus on
the differences: As the heating is more strongly concentrated
towards the footpoints of the loop, the net energy supply per
particle at the loop top starts to decrease at an earlier point in
time so that the maximum loop temperature attained is lower,
namely Tmax = 2.2 × 105 K for Hm = 0.75 Mm, and Tmax =

2.6 × 105 K for Hm = 1.0 Mm compared to Tmax = 3.4 × 105 K
for Hm = 1.25 Mm. Due to the strong radiative losses towards
T = 2 × 105 K, these loops subsequently also cool faster than
the hotter loop, so that the period of the condensation cycle is
shorter than for Hm = 1.25 Mm: P = 4600 s for Hm = 0.75 Mm
and P = 4100 s for Hm = 1.0 Mm. The cooling rate, ∆T/∆t, in
the temperature range 1.5 × 105 K < T < 2.5 × 105 K is very
similar for all three cases, which leads us to the conclusion that
the increased period for the damping length of Hm = 1.25 Mm
is mostly due to the longer duration of loop reheating and loop
cooling at temperatures T > 2.5× 105 K. First tests with longer
and hotter loops suggest that the cooling phase from T = Tmax

up to the development of a dip in the temperature profile can in-
deed be much longer than any other phase of the condensation
cycle. Table 1 summarizes the relevant parameters for different
damping lengths.

It should be noted that for all loops which form a conden-
sation region, the minimum mean temperature is very similar,
〈T 〉min = 1.4−1.5 × 105 K. This minimum temperature is at-
tained when the condensation region has just formed, which
happens shortly after the dip in the temperature profile has
developed. At this point in time, the energy balance, as dis-
cussed in Sect. 3.2, is very similar for all loops. This is illus-
trated in Fig. 6, which displays the temperature profiles of three
different loops corresponding to the respective minimal mean
temperatures.
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Fig. 6. Temperature profiles of different loops at the time when a con-
densation region has formed. Solid line: Hm = 1.25 Mm, dotted line:
Hm = 1.0 Mm, dash-dotted line: Hm = 0.75 Mm.

As shown in Fig. 5, the period of the condensation cycle
depends on the damping length – the more the heating is lo-
calized near the footpoints, the sooner the thermal instability
sets in.

3.5. Limit cycle of loop evolution

As pointed out previously, the thermal evolution of the model
coronal loop shows periodicity for a significant parameter
range of the damping length. To illustrate this cyclic pattern,
we plot in Fig. 7 the mean density, 〈ρ〉, of the loop as a func-
tion of mean loop temperature, 〈T 〉. From here on, we define
the mean values as the average quantities over the region of
the loop which lies above the transition region, bounded by the
points where the temperature crosses T = 105 K in both loop
legs. The exact choice of this cut-off value does not signifi-
cantly influence the results and could be set to any tempera-
ture T > 2 × 104 K. In contrast to the convention used in the
previous section, this definition is independent of motions of
the chromosphere–transition region boundary, while the for-
mer definition was used to describe the decaying loop together
with the other solutions. Figure 7 displays the loop evolution
for two different damping lengths: for Hm = 1.50 Mm, the
loop approaches a stationary solution (open circles), while for
Hm = 1.25 Mm (dots), the loop enters a limit cycle after its ini-
tial cooling, expressing the fact that the loop evolution becomes
independent of the initial boundary conditions. The evolution
can be divided into four parts:

I The 10 Mm loop first cools down from its initial mean tem-
perature of 〈T 〉0 = 5 × 105 K to 〈T 〉 ≈ 1.4 × 105 K.

IIa The onset of condensation is seen as an increase in the
mean density of the loop. The mean temperature starts to
rise again shortly before the condensation region leaves the
loop, which is due to the fact that one side of the loop is
already reheating while the condensation region is mov-
ing to the other side. The stage of evolution when the con-
densation region drains from the loop is seen as a sudden
drop in density from 〈ρ〉 = 3.6 × 10−12 kg m−3 to 〈ρ〉 =
1.4×10−12 kg m−3. One point is plotted for each 10 s of the

Fig. 7. Limit cycle of loop evolution for a damping length of Hm =

1.25 Mm (dots) and Hm = 1.50 Mm (open circles). The phases of evo-
lution are indicated as follows: (I): initial cooling, (II a) condensation,
(II b) simultaneous evolution of the hot part of the loop (dashed line),
(III) loop reheating and chromospheric evaporation.

evolution, and the lack of points in this fairly large inter-
val of mean density illustrates that the condensation region
leaves the loop very quickly (but still with a velocity that is
much slower the free-fall velocity of vff = 31.2 km s−1 for
this loop).

IIb As the mean density of the loop during the condensation
phase is dominated by the condensation region itself, we
also evaluated the density in the hot part of the loop alone:
due to the formation of a condensation region, the density
in the adjacent parts of the coronal loop decreases which
leads to an increase in temperature. The mean values of the
hot part of the loop for this stage of evolution is plotted as
a dashed line in Fig. 7.

III After the condensation region has drained, the evacuated
loop reheats and chromospheric matter is evaporated, as
indicated by the increase in mean density. When the loop
reaches 〈T 〉 = 3× 105 K, the radiative losses at the loop top
are no longer balanced by the energy supply through me-
chanical heating, conductive flux, and enthalpy flux, so that
the temperature starts to decrease and the cycle repeats.

Cyclic evolution of coronal loops was studied for the first time
by Kuin & Martens (1982). In their semi-analytical model, they
treated the coronal loop as a zero dimensional system, coupled
to the underlying chromosphere. Depending on the strength of
the coupling, the authors obtained different classes of solutions,
namely solutions converging towards a fixed point, and solu-
tions approaching a limit cycle. As the loop was treated as one
zero dimensional system, however, Kuin & Martens were not
able to model any spatially localized condensation which in
our work leads to the upward-arching branch in the 〈ρ〉(〈T 〉)
diagram of Fig. 7. Considering the hot coronal part of the
loop alone, in contrast, reconciles our spatially resolved loop
model with the semi-analytical approach of Kuin & Martens
(cf. Fig. 7, dashed line).
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3.6. Remarks on Rayleigh-Taylor instability

Loop configurations with a density inversion at the center are
unstable against Rayleigh-Taylor instability if ∇ρ · g < 0. The
question is: would a Rayleigh-Taylor instability inhibit the con-
densation of plasma in the upper part of a coronal loop? To es-
timate the importance of Rayleigh-Taylor instability compared
to the dynamic time scale of our model loop, we follow the
work of Chandrasekhar (1961) and calculate the growth rate,
ω, of the amplitude of normal modes of the form A(x, t) ∝
exp[i(kxx + kyy) +ωt] as a result of a density perturbation near
the boundary between two incompressible, inviscid fluids of
uniform densities, ρ2 and ρ1 (ρ2 > ρ1), permeated by a uni-
form magnetic field parallel to the direction of the gravitational
force. One finds that an upper limit for the growth rate, ω, of
the perturbation is given by

ωmax =

√
4πµg‖
B0

(√
ρ2 − √ρ1

)
. (7)

Inserting typical values for the formation of a condensation
region of ρ1 = 3 × 10−12 kg m−3, ρ2 = 4 × 10−11 kg m−3,
g‖ = 0.04 · g (corresponding to a width of the condensation
region of 0.2 Mm), and B0 = 10 G, we obtain a time scale of
T = 2π

ω
≈ 22 000 s, which is more than an order of magnitude

larger than the time scale over which the condensation region
evolves. We thus conclude that the onset of Rayleigh-Taylor
instability does not fundamentally affect the formation of the
condensation region. It might eventually lead to a dissolution
of the condensation region, but at that stage, this region is al-
ready moving towards the loop footpoint, which would also
happen if the condensation were split up in pieces.

Moreover, we have checked that the perturbation of the
loop geometry due to the accumulation of mass in the center
of the loop is negligible.

3.7. Spectral signature of condensation in transition
region lines

The fact that our numerical code self-consistently solves the
non-equilibrium ionization rate equations not only for hydro-
gen and helium, but also for the atomic species C, O (and Fe,
Mg, N, Ne, and Si, if desired) offers the possibility of synthe-
sizing optically thin transition region lines. The inclusion of
non-equilibrium ionization effects is of vital importance when
studying the spectral signature of a plasma in a dynamic state
like in the present case.

Figure 8 displays the intensity variations of
the lines C IV 1548 Å (formed at T ≈ 1 × 105 K), O V 630 Å
(T ≈ 2.2 × 105 K), and O VI 1032 Å (T ≈ 3.2 × 105 K) during
the evolution of the loop. The spectral lines are calculated by
integrating the emission of the entire loop as seen vertically
from the top, the line widths are given in velocity units. All
three lines show periodic brightenings which have their origin
in the condensation process. In the case of the C IV line, the
strong increase in density at the beginning of the condensa-
tion results in high radiative losses and hence an intensity
maximum. A second maximum of slightly smaller amplitude
is attained when the condensation region has grown to its

Fig. 8. From left to right: space-time plot of the loop temperature and
the corresponding variations of the lines of C IV 1548 Å, O V 630 Å,
O VI 1032 Å for a damping length of Hm = 1.25 Mm.

maximum, shortly before draining down the loop leg. Right
after the condensation region has left the loop, the intensity
is minimal as the loop is devoid of plasma at this stage. In
the following evolution, the intensity gradually increases as
chromospheric evaporation sets in again. In contrast to this,
the intensity of the O VI line is maximal when the temperature
is highest as the line is formed around T ≈ 3.2 × 105 K. When
the condensation sets in and the maximal loop temperature
temporarily sinks below T = 2 × 105 K, the intensity in
O VI almost drops to zero. The O V line, formed around
T ≈ 2.2 × 105 K, can be considered as an intermediate case.

For a damping length of Hm = 1.25 Mm, the C IV to-
tal intensity varies between 1.1 W/(m2 sr) and 3.8 W/(m2 sr),
the O V total intensity varies between 2.0 W/(m2 sr) and
6.9 W/(m2 sr), while the O VI total intensity varies between
0.1 W/(m2 sr) and 4.8 W/(m2 sr). The observed Doppler shifts
are small as the chosen viewing angle is largely perpendicu-
lar to the direction of motion in the loop and the velocities
are small. For shorter damping lengths, the maximum tem-
peratures of the loop are lower which results in a decreased
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intensity for lines which are formed at higher temperatures.
The O VI line, e.g., shows bright periodic intensity maxima
for Hm = 1.25 Mm, while it is almost invisible for a damp-
ing length of Hm = 0.75 Mm. In contrast to this, the intensity
range of the C IV line remains almost unaffected by a change of
the damping length as the maximum loop temperature exceeds
in all cases its formation temperature.

4. Discussion

We have shown that cool coronal loops can exhibit inherently
dynamic behavior even under the simple assumption of a
mechanical energy flux into the loop that is dissipated expo-
nentially with a given scale height but constant in time. This
scenario is interesting in the sense that no time-dependent driv-
ing mechanism is needed to generate transient brightenings in
transition region lines. Simultaneous observations of, e.g., the
C IV 1548 Å and the O VI 1032 Å lines, would be advanta-
geous in order to verify if this phenomenon is as ubiquitous as
it seems.

Recent TRACE observations of Schrijver (2001) indeed
show frequent “catastrophic cooling” and evacuation of coro-
nal loops over active regions and enhanced emission of C IV,
developing initially near the loop top, followed by quick drain-
ing. Furthermore, CDS observations by Fredvik (2002) show
localized brightenings in coronal loops in O V 630 Å on the
limb which move quickly towards the solar surface and could
be interpreted as cooling plasma close to a condensation re-
gion. As most of these recent observations refer to loops that
are about one order of magnitude larger than those considered
here, further work is on its way to study the dependence of the
condensation process on the loop length. This could also help
to better understand and disentangle loops of different lengths
in active regions, as observed, e.g., by Spadaro et al. (2000).

The fact that the dynamic loop models described in this
work can show strong emission in lines formed at T ≤ 105 K
and at the same time relatively weak emission in lines formed
at higher temperatures seems promising with respect to the out-
standing problem that current models predict an emission mea-
sure that is either much lower than the emission observed at
T < 105 K or much higher than what is observed at T > 105 K.

Further observational confirmation of the dynamics pre-
dicted in this paper, preferably concentrating on shorter loops,
would lead to a strengthening of the hypothesis that coronal
heating is concentrated towards the footpoints of loops. Such
knowledge would be very useful to limit the number of possi-
ble coronal heating mechanisms.

Acknowledgements. D.M. thanks the members of the Institute of
Theoretical Astrophysics, Oslo, for their hospitality and support, and
acknowledges grants by the Deutsche Forschungsgemeinschaft, DFG,
and the German National Merit Foundation. This work was also sup-
ported in part by the EU-Network HPRN-CT-2002-00310.

References

Antiochos, S. K., & Klimchuk, J. A. 1991, ApJ, 378, 372
Antiochos, S. K., MacNeice, P. J., & Spicer, D. S. 2000, ApJ, 536,

494
Antiochos, S. K., MacNeice, P. J., Spicer, D. S., & Klimchuk, J. A.

1999, ApJ, 512, 985
Antiochos, S. K., & Noci, G. 1986, ApJ, 301, 440
Arnaud, M., & Rothenflug, R. 1985, A&AS, 60, 425
Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ,

541, 1059
Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550,

1036
Cally, P. S. 1990, ApJ, 355, 693
Cally, P. S., & Robb, T. D. 1991, ApJ, 372, 329
Carlsson, M. 2003, private communication
Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic sta-

bility (International Series of Monographs on Physics, Oxford:
Clarendon)

Dorfi, E. A., & Drury, L. O. 1987, J. Comp. Phys., 69, 175
Dowdy, J. F., Rabin, D., & Moore, R. L. 1986, Sol. Phys., 105, 35
Feldman, U., Dammasch, I. E., & Wilhelm, K. 2000, Space Sci. Rev.,

93, 411
Feldman, U., Dammasch, I. E., & Wilhelm, K. 2001, ApJ, 558,

423
Fredvik, T. 2002, private communication
Hansteen, V. 1993, ApJ, 402, 741
Hansteen, V. H., & Leer, E. 1995, J. Geophys. Res., 100, 21577
Janev, R. K., Langer, W. D., & Evans, K. 1987, Elementary processes

in Hydrogen-Helium plasmas - Cross sections and reaction rate co-
efficients (Springer Series on Atoms and Plasmas, Berlin: Springer)

Judge, P. G., & Meisner, R. 1994, in The Third SOHO Workshop,
Solar Dynamic Phenomena and Solar Wind Consequences, ed. J. J.
Hunt (ESA SP-373, Nordwijk: ESTEC)

Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A., &
MacNeice, P. J. 2001, ApJ, 553, L85

Kuin, N. P. M., & Martens, P. C. H. 1982, A&A, 108, L1
Kuin, N. P. M., & Poland, A. I. 1991, ApJ, 370, 763
Mariska, J. T. 1992, The solar transition region (Cambridge

Astrophysics Series, New York: Cambridge University Press)
Peter, H. 2000, A&A, 360, 761
Peter, H., & Judge, P. G. 1999, ApJ, 522, 1148
Rosner, R., Tucker, W. H., & Vaiana, G. S. 1978, ApJ, 220, 643
Schrijver, C. J. 2001, Sol. Phys., 198, 325
Serio, S., Peres, G., Vaiana, G. S., Golub, L., & Rosner, R. 1981, ApJ,

243, 288
Shull, J. M., & van Steenberg, M. 1982, ApJS, 48, 95
Spadaro, D., Lanzafame, A. C., Consoli, L., et al. 2000, A&A, 359,

716
Spitzer, L. 1962, Physics of Fully Ionized Gases, 2nd ed. (New York:

Interscience)
Van Leer, B. 1974, J. Comp. Phys., 14, 361
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635
von Neumann, J., & Richtmyer, R. D. 1950, J. Appl. Phys., 21, 232
Winkler, K.-H. A., Norman, M. L., & Mihalas, D. 1984, J. Quant.

Spect. Rad. Trans., 31, 473


